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Numerical  optimization  was  used in conjunction  with  an  inviscid,  full 
potent'ial equation,  transonic  flow  analysis  computer  code  to  design  an  upper 
surface  contour  for a conventional  airfoil  to  improve  its  supercritical 
performance.  The  modified  airfoil  was  tested in the  Lockheed-Georgia  Com- 
pressible  Flow  Wind  Tunnel.  The  majority  of  the  test  was  done  at  eleven 

porosity. million  Reynolds  number  and a four  percent  tunnel  top  and  bottom  wall 
A limited  amount  of  testi 
and  wall  porosities. 

The  modified  airfoil 

ng was  done  to  obtain  data  at  other  Reynolds 

I s  performance  was  evaluated  by  comparison w 

n umbe r s  

ith test 
data  for  the  baseline  airfoil and for an airfoil  developed  by  optimization  of 
only  the  baseline  airfoil's leading edge.  While  the  leading  edge  modification 
performed  as  expected,  the  upper  surface  re-design did not  produce all of  the 
expected  performance  improvements.  Although  the drag divergence  Mach  number 
was  increased,  the  modified  airfoil  exhibited more'drag creep than f o r  the 

baseline  section.  This  larger  drag  creep is attributable  to  the  early  formu- 
lation  (at  approximately L= .68) of a relatively  strong  leading  edge  shock 
wave. 

Theoretical  solutions  computed  using a viscous,  full  potential  equation 
transonic  airfoil  code  were  compared  to  experimental  data  for  the  baseline air- 
foil and the  upper  surface  modification.  These  correlations  showed that the 
theory  predicted  the  baseline  airfoil's  aerodynamics  fairly  well, but failed 
to  accurately  compute  results  for  the  upper  surface  modification.  This  fail- 
ure  is  shown  to  be  attributable  to  the  inability  of  the  theory  to  properly 
treat  the  thick trailing edge  boundary  layer  associated  with  the  upper  surface 

modification. 

Numerical  optimization is concluded  to  offer  the  means  for  efficiently 

designing  advanced  airfoils.  However, until a completely  reliable  viscous air- 
foil  analysis  technique  is  developed,  optimization  can  be  used  with  confidence 
only  when  the  character  of  the  viscous  flow  is  not s i g n i f i c a n t l y a l t e r e d d u r i n g  

the  optimization  process. 

i i  
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I NTRODUCT I ON 

E f f i c i en t   t ranson ic   pe r fo rmance   con t inues   t o  be  an important  design 

requ i rement   fo r  many  new a i r c r a f t .   S p e c i a l i z e d   a i r f o i l s  whose contours  are 

dependent  upon  design  condit ions  are needed to   ach ieve   t he   des i red   t ranson ic  

performance. To d e s i g n   t h e s e   a i r f o i l s   r a p i d l y  and e f fec t i ve l y ,   ae rodynamic i s t s  

must  have ava i l ab le   accu ra te  and easy- to-use  theoret ica l   des ign methods.  The 

n o n l i n e a r i t y   o f   t h e   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   t h a t   d e s c r i b e   t r a n s o n i c  

f lows has  hampered the  development o f  such theo re t i ca l   des ign  methods. However, 

advances i n   compu ta t i ona l   f l u id   dynamics ,   t oge the r   w i th   t he   ava i l ab i l i t y   o f  

l a r g e  and fast  computers, have r e s u l t e d   i n   t h e   r e c e n t   a v a i l a b i l i t y   o f  a  number 

o f   t ranson ic   des ign   techn iques .  

A i r f o i l   d e s i g n  methods  can be categor ized as e i t h e r   i n v e r s e   o r   d i r e c t  

procedures.   Inverse  methods  invo lve  the  spec i f icat ion  o f  a desired  pressure 

d i s t r i b u t i o n  and t h e   c a l c u l a t i o n   o f   t h e   c o r r e s p o n d i n g   a i r f o i l .  The need t o  

s p e c i f y  a p r i o r i  a p r e s s u r e   d i s t r i b u t i o n   t h a t  will r e s u l t   i n  a p h y s i c a l l y  

r e a l i s t i c   o p t i m i z e d   a i r f o i l   i s  a disadvantage  of   inverse  procedures.   inverse 

methods  have  been f o r m u l a t e d   e i t h e r  by using  hodograph  equations  or by s o l v i n g  

the  problem  in   the  phys ica l   p lane  (e .g. ,   re fs .  1 and 2 ,  respec t ive ly ) .   S ince  

hodograph  formulat ions  are  appl icable  on ly   to   shock- f ree  f lows,   they  are  o f  

l imi ted  usefu lness  in   t ransonic   des ign.   A lso,   cons iderable  user   exper t ise i s  

r e q u i r e d   t o  employ  hodograph  design  methods.  Physical-plane  solutions  suffer 

c o m p u t a t i o n a l   d i f f i c u l t i e s   i n   t h e   l e a d i n g  edge region  which  are  usual ly  avoid- 

ed  by s p e c i f y i n g   t h e   a i r f o i l  geometry  near  the  leading edge. Since  proper 

leading edge d e s i g n   i s  needed t o   d e s i g n   o p t i m i z e d   t r a n s o n i c   a i r f o i l s ,   t h i s  

approach l im i t s   t he   use fu lness   o f   phys i ca l   p lane   i nve rse   so lu t i ons   i n   t ranson ic  

design  work. 

The above-mentioned d i f f i c u l t i e s   a r e   a v o i d e d   i n   d i r e c t   d e s i g n  methods. 

in   th is   des ign   approach,  a numer i ca l   op t im iza t i on   a lgo r i t hm i s  coup led   w i th  

a su i tab le  aerodynamic  analys is  method t o   d e s i g n   a i r f o i l s   t h a t   a r e   i n  some 

sense o p t i m i z e d   f o r   . s p e c i f i c   f l i g h t   c o n d i t i o n s .   F o r  example, an a i r f o i l  con- 

t o u r  can  be  determined  which  minimizes  drag  at a s p e c i f i c  l i f t  c o e f f i c i e n t  

w i th   t he   p i t ch ing -moment   coe f f i c i en t   cons t ra ined   t o  be w i th in   accep tab le  



t r a n s o n i c   a i r f o i l s   d e s i g n e d  

Because o f  i t s  v e r s a t i  

son ic   des ign   p ro jec ts   i n  wh 

are  sought  by a i r f o i l   m o d i f  

mod 

des 
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l i m i t s .  Perhaps the  most p romis ing   d i rec t   des ign  method i s  under  development 

a t  NASA-Ames by  Hicks and h i s   assoc ia tes .  The method i s   d e s c r i b e d  and  -example 

designs  are  d iscussed  in  references 3 and 4. B r i e f l y ,   t h e  method involves 

coup l i ng  a numer ica l   op t im iza t ion  scheme developed  by  Vanderplaats  (ref.  5) 
w i t h   p r o v e n   a i r f o i l   a n a l y s i s  methods. The a b i l i t y   t o  use  any t h e o r e t i c a l  

ana lys i s  method  and  any numer i ca l   op t im iza t i on 'a lgo r i t hm makes the  technique 

v e r y   v e r s a t i l e .  

C u r r e n t l y ,   t h e   t r a n s o n i c   f u l l   p o t e n t i a l  code  developed  by Jameson ( r e f . 6 )  

i s   b e i n g  used t o   p r o v i d e   t h e  needed  aerodynamic  data.  Viscous  effects, known 

t o  be impor tan t   i n   t ranson ic   f l ow   ca l cu la t i ons ,   a re   neg lec ted   i n  Jameson's 

ana lys i s  method. An inviscid  aerodynamic  module i s  used  because c u r r e n t l y  

a v a i l a b l e   v i s c o u s   t r a n s o n i c   a i r f o i l   a n a l y s i s  programs  are  not  completely  re- 

l i a b l e ,  and they   requ i re  more computat ion  t ime  than  inviscid  techniques. 

Exper ience  w i th   app ly ing   the   p rocedure   to   des ign   subson ic   a i r fo i l s  has i n d i -  

cated  that   aerodynamic  performance  predicted by i n v i s c i d  methods will be 

manifested when a v i s c o u s   a n a l y s i s   o f   t h e   r e s u l t i n g   a i r f o i l   i s   p e r f o r m e d .  

There  is ,   nevertheless,  a  need t o   e x p e r i m e n t a l l y   v e r i f y   t h e   p e r f o r m a n c e   o f  

us ing   the   inv isc id   p rocedure .  

l i t y ,   H i c k s '  method should be u s e f u l   b o t h   i n   t r a n -  

ich  performance improvements i n   e x i s t i n g   a i r c r a f t  

i c a t i o n ,  and i n   p r o j e c t s   i n   w h i c h  new a i r f o i l s   f o r  

advanced a i r c r a f t   a r e   r e q u i r e d .  The f i r s t  a p p l i c a t i o n   i s   b e i n g   i n v e s t i g a t e d  

i n  a pro ject   be ing  conducted  by Lockheed. W i t h   t h e   a i d   o f   H i c k s ,  Lockheed 

researchers  recent ly   appl   ied  the  procedure  to   the  redesign  o f   the  forward 12% 

o f   t h e  C-141 a i r f o i l   l e a d i n g  edge. T h i s   a p p l i c a t i o n  was se lected because t h a t  

a i r f o i l   e x h i b i t s  a large  drag  creep  which  might be reduced  by a l im i ted   mod i -  

f i c a t i o n   o f   t h e   l e a d i n g  edge. This  work was s u c c e s s f u l   i n   t h a t   t h e   p r e d i c t e d  

drag  creep was reduced t o   t h e  same level   obta ined  by a t r i a l  and c o r r e c t i o n  

process  in  which  analysis methods  were  used t o   e v a l u a t e  many candidate  leading- 

edge m o d i f i c a t i o n s ,   b u t   i n  a f r a c t i o n   o f   t h e   t i m e .  

The a i r f o i l  leading-edge  design  using  Hicks'  method was obtained  by 

i f y i n g   o n l y   t h e  C-141 a i r f o i l  upper   su r face .   I n   con t ras t ,   t he   a i r f o i l s  

igned  us ing  the  t r ia l -and-correct ion  procedure  invo lved  s imul taneous  upper  



and lower   sur face  modi f icat ions.   Consequent ly ,   H icks '   modi f icat ion may be 

e a s i e r   t o   i n c o r p o r a t e  as an a i r c r a f t  change. Further,  because it has a l a r g e r  

lead ing-edge  rad ius ,   H lcks '   a i r fo i l  may prov ide   be t te r   low-speed  s ta l l   charac-  

t e r i s t i c s   t h a n   e i t h e r   t h e   b a s i c  C-141 s e c t i o n   o r   t h e   o t h e r   p r o p o s e d   a i r f o i l  

mod i f i ca t i ons .  

The H i c k s '   m o d i f i c a t i o n   t o   t h e  C-141 a i r f o i l  leading-edge,  as  well  as  the 

bas i c  C-141 sect ion,  have  been t e s t e d   i n   t h e  Lockheed  Compressible  Flow Wind- 

Tunnel (CFWT) a t   t r a n s o n i c  speeds  under an i n t e r n a l  Lockheed research program. 

A i r f o i l   s u r f a c e   p r e s s u r e   d i s t r i b u t i o n s  and the   a t tendant   fo rces  and moments 

were ob ta ined   f o r  an extens ive  range  o f  Mach numbers  and l i f t  c o e f f i c i e n t s .  

These da ta   subs tan t i a ted   t he   t heo re t i ca l l y   p red ic ted   pe r fo rmance  improvements 

resu l t i ng   f rom  numer i ca l   op t im iza t i on .  The wind  tunnel   test   data showed t h a t  

a 7% improvement i n  (ML/D) may have resu l ted   f rom  the   mod i f i ca t i on   o f   t he   upper  

sur face   o f   the   fo rward  12% o f   t h e   a i r f o i l .   I n   a d d i t i o n   t o   p r o d u c i n g  an e f f i c -  

i en t   a i r f o i l   mod i f i ca t i on ,   numer i ca l   op t im iza t i on   requ i red   abou t   ha l f   t he  comp- 

u t a t i o n  time and r e s u l t e d   i n  a  25% reduc t ion   in   eng ineer ing   hours  when compared 

t o  a convent ional   t ra i l -and-correct ion  approach.  

The purpose o f   t h e  work  reported  herein was t o   d e t e r m i n e   t h e   a p p l i c a b i l i t y  

o f   n u m e r i c a l   o p t i m i z a t i o n   i n  an ex tens i ve   redes ign   o f  a c o n v e n t i o n a l   a i r f o i l   t o  

improve i t s   s u p e r c r i t i c a l  performance. The problem  selected was t h e   r e - c o n t o u r  

i n g   o f   t h e   e n t i r e   u p p e r   s u r f a c e   o f   t h e   b a s e l i n e  C-141A w i n g   a i r f o i l   s e c t i o n .  

This  problem was se lected because t h e   a v a i l a b i l i t y   o f   t h e  work  already done on 

t h e  C-141 a i r f o i l  upper   sur face  leading-edge  modi f icat ion  premi t ted an e f f i c i e n t  

comparison o f   t h e  use o f  n u m e r i c a l   o p t i m i z a t i o n   f o r   l i m i t e d  and e x t e n s i v e   a i r -  

f o i l   m o d i f i c a t i o n .  

In   th is   repor t ,   the   aerodynamic   des ign   o f   the   upper   sur face   mod i f i ca t ion  

us ing   numer ica l   op t im iza t ion   i s   d iscussed,   the   w ind   tunne l  model design and 

tes t   a re   descr ibed,   the   redes igned  a i r fo i l   per fo rmance i s  compared w i t h   t h a t  

o f   t h e   b a s e l i n e  and mod i f ied   lead ing-edge  a i r fo i l s ,  and the  design  procedure 

is   eva lua ted .  

For  reasons  which will become apparen t ,   t he   upper   su r face   mod i f i ed   a i r f o i l  

will be r e f e r r e d   t o  as C141H7472.  The b a s e l i n e   a i r f o i l  and the   op t im ized 
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V op t im iza t i on   des ign   va r iab les  

z coo rd ina te   no rma l   t o   a i r f o i l   cho rd   l i ne ,  cm ( i n . )  

a g e o m e t r i c   a n g l e   o f   a i r f o i l   c h o r d  1 ine,  degrees 

Y r a t i o   o f   s p e c i f i c   h e a t s  

T wind  tunnel   wal l   poros i ty ,  % 

Subscr ip ts :  

t . e .   t r a i l i n g  edge 

T t r a n s i t i o n   s t r i p   l o c a t i o n  

0 zero  normal  force 

1 t u n n e l   s t a t i o n  one chord  length downstream o f  model 

m denotes  f reestream  condi t ions 

Abbreviat ions:  

CFWT Lockheed  Compressible  Flow Wind Tunnel 

1,  1.5. lower  surface 

u, U . S .  upper  surface 

L.E. 1 ead i ng edge 

AIRFOIL DESIGN 

The 

basel  ine 

c r u i s e  1 

a i r p l  ane 

a d i r e c t  

base 1 i ne 

d e s i g n   o b j e c t i v e   o f   t h i s   s t u d y  was 

C-141 a i r f o i l ,  and to   inc rease  the  

Prob lem  Def in i t ion  

to   m in im ize   t he   c ru i se   d rag   o f   t he  

! drag  divergence Mach number a t  

i f t .  The sec t i on  Mach number  and l i f t  c o e f f i c i e n t   c o r r e s p o n d i n g   t o  

c ru i se   cond i t i ons   a re  .72 and .57, respec t ive ly .   In   o rder  t o  have 

comparison w i th   the   lead ing-edge  upper   sur face   mod i f i ca t ion   o f   the  

a i r f o i l  designed  by  Lockheed  and Ames, t h e   a i r f o i l   m o d i f i c a t i o n  was 

r e s t r i c t e d   t o   t h e  upper  surface.  Geometric  cqnstraints imposed  on t h e   a i r f o i l  

m o d i f i c a t i o n  were tha t   the   th ickness- to -chord   ra t io   no t  be  reduced and t h a t  

5 



t h e   a i r f o i l   l e a d i n g - e d g e   r e t a i n   a t   l e a s t   t h e  same degree o f   b lun tness .  The 

l a t t e r   c o n d i t i o n  was imposed t o   a v o i d   p o t e n t i a l l y   p o o r   a i r f o i l   s t a l l  

c h a r a c t e r i s t i c s .  

Numerical  Optimization 

Cn = - 5 7  
~m = .72 

RN = 1 1  X lo6 
x/c = .10 

i ve 

i c a l  

The a i r f o i l  upper  surface  contour needed t o   a t t a i n   t h e   d e s i g n   o b j e c t  

was determined  using  the  previously  d iscussed NASA-Ames aerodynamic numer 

o p t i m i z a t i o n  scheme. 

Design p o i n t   d e f i n i t i o n .  - S ince   the   op t im iza t ion  scheme used an i n v i s c i d  

t ranson ic  method to   p rov ide   aerodynamic   da ta   requ i red   dur ing   the   op t im iza t ion  

process,  the f i r s t  s tep   in   the   des ign   s tudy  was to   de termine  an i n v i s c i d  de- 

s ign   cond i t i on .  The u n d e r l y i n g   h y p o t h e s i s   i n   t h i s   i n v i s c i d   o p t i m i z a t i o n  i s  

t h a t  improvements made a t   t h e   i n v i s c i d   d e s i g n   c o n d i t i o n s  will be r e a l i z e d   i n  

a v iscous  f low. 

b 

The inv i sc id   des ign   cond i t i on  was determined  by f i r s t  computing a v iscous 

so lu t i on   us ing   t he  NYU t ranson ic   f l ow   ana lys i s   rou t i ne   ( re f .  1 )  for   the  base- 

l i n e   a i r f o i l  (C141-1) a t   c r u i s e   c o n d i t i o n s .   S i n c e   t h e   e v a l u a t i o n   o f   t h e  

o p t i m i z e d   a i r f o i l   w o u l d  be  done using  wind  tunnel  data,  the  solut ions  were 

computed at   the  tunnel   Reynolds number.  Thus, t h e   f o l l o w i n g   c o n d i t i o n s  were 

spec i f i ed   i n   pe r fo rm ing   t he   v i scous   ca l cu la t i ons :  

The r e s u l t s   o f   t h e s e   c a l c u l a t i o n s   a r e  shown i n   f i g u r e  1 where they  are 

compared wi th   exper imenta l   data.  The agreement  between theory and experiment 

shown here i s  f a i r ,   w i t h   t h e   m a j o r   d i s c r e p a n c y   b e i n g   t h e   s l i g h t l y  more a f t  

t h e o r e t i c a l  shock locat ion.   S ince  recent   work  by  B lackwel l ,   e t   a l . ,   repor ted 

in   re fe rence 7 shows the   s t rong  dependence o f  shock l o c a t i o n   t o   w a l l   p o r o s i t y  

6 



c 

and 

dit i l  

achis 

was 

since the theoretical calcualtions are done with free-air boundary con- 

ons, no attempt was made to seek better theory-to-experiment agreement. 

The viscous solution indicated  that the airfoil angle of attack to 

eve the above conditions was approximately two degrees. The assumption 

made that the lift loss due to viscosity for the optimized airfoil would 
be about the same as for the baseline airfoil. The inviscid design point was 

thus defined to be: 

M, = .72 

a = 20 

Design object&. - The design objective (i.e., the parameter to be 

minimized at the design point)  for this study was wave drag minimization at 

the design point. In an attempt to increase MDD, and at the same time avoid 

a point optimization which would be reflected in a local bucket in the Cd 
variation with Mach number, a secondary design objective was to reduce Cdw at 
.74 Mach number. This second design objective was introduced  as a constraint 

in the optimization scheme, and its imposition is discussed in the following 
section. Consequently, the objective function in the minimization scheme was: 

OBJ = Cdw(a = 2O, M, = .72) 

Design constraints. - Four constraints were imposed during the optimiza- 
tion scheme: 

(1) Z upper /C (X/C = .5) > .074 
(2) Z upper /C (X/C = .005) > .01 

( 3 )  Cn > -85 
(4) cdw (a = 2O , M, = .74) > -0020 

1 The first constraint was imposed to ensure that the optimized airfoi 

least as thick as the baseline section. An arbitrary nose bluntness 
by the second constraint. The third constraint was required in an a 
ensure that when viscous effects were taken  into account, the airfoi 

t 

1 

was at 

was forced 

tempt to 
would 

7 



produce a t   l e a s t   t h e   d e s i r e d   c r u i s e  l i f t .  The 

secondary   des ign   ob jec t ive   by   requ i r ing  Cdw a t  

The 20-count  level  was se lec ted   to   be   compat ib  

produce a f l a t  Cdw versus M, c u r v e   a t  Cn = .57 

f i n a l   c o n s t r a i n t   e n f o r c e s   t h e  

M, = .74 be  less  than 20 counts. 

l e   w i t h   t h e   d r a g   a t  M, = .72 t o  

Design  var iables.  - P r o p e r   s e l e c t i o n   o f   d e s i g n   v a r i a b l e s   i s   i m p e r a t i v e  i f  

t h e   d e s i g n   o b j e c t i v e   i s   t o  be e f f i c i e n t l y   a t t a i n e d   i n   n u m e r i c a l   o p t i m i z a t i o n .  

In   the  leading-edge  modi f icat ion  s tudy a s ing le   po l ynomia l   rep resen ta t i on   o f  

the  forward 12% o f  the  upper  surface was used. I n   t h a t  case,  the  design  var i -  

ab les   ( i .e . ,   the   parameters   per tu rbed  dur ing   the   op t im iza t ion  scheme) were  the 

c o e f f i c i e n t s  o f  the  polynomial  and/or  the  exponents  on  the  polynomial  terms. 

This  approach  proved t o  be successful   because  only a few  terms  were  required 

t o   a c h i e v e   s u f f i c i e n t   d e s i g n   f l e x i b i l i t y  and  hence  computation  t imeswere  small. 

However,  numerous polynomials  would be r e q u i r e d   t o   p r o v i d e  an e n t i r e  upper 

sur face   parameter iza t ion   w i th   adequate   des ign   f lex ib i l i t y   w i th   each  po lynomia l  

ma in ta ing   o rd ina te  and a t   l e a s t   f i r s t   d e r i v a t i v e   c o n t i n u i t y   a t   t h e  match  poin-ts. 

Such an  approach  would  not  only  be  complex, it would  a lso be computa t iona l l y  

expensive.  Therefore, an a l t e r n a t i v e   a i r f o i l   p a r a m e t e r i z a t i o n  scheme  was used 

i n   t h i s   s t u d y .  The  scheme  was developed  by Ames researchers and i t  invo lves  

the  use o f   p e r t u r b a t i o n  shape func t i ons   t o   d i s to r t   t he   upper   su r face   con tou r  

o f   t h e   b a s e l i n e   a i r f o i l .  The shape func t i ons   used   i n   t h i s   work   a re  shown i n  

f i g u r e  2 w i t h   t h e i r   d e f i n i n g   e q u a t i o n s .   I n   t h i s  case, the  des ign  var iab les 

a re   t he   p re -mu l t i p l y ing   coe f f i c i en ts   wh ich   de te rm ine   t he   magn i tude   o f   t he   i n -  

d i v i d u a l  shape func t ions .  These p r e - m u l t i p l y i n g   ( o r   p a r t i c i p a t i o n )   c o e f f i c i e n t s  

a re   ad jus ted   by   the   op t im iza t ion  scheme u n t i l   t h e   d e s i g n   o b j e c t i v e   i s  met w i t h -  

o u t   v i o l a t i n g   t h e   c o n s t r a i n t s .  Thus, twelve  (12)  geometric  design  variables 

were  used i n   t h i s   s t u d y .  An add i t i ona l   des ign   va r iab le ,   t he   ang le   o f   a t tack  

(a), was t r i e d  and found t o  be  unnecessary. 

A i r f o i l  nomencalture. - Since  the  upper   sur face  modi f icat ion was developed 

w i t h   t h e   o b j e c t i v e   o f   r e d u c i n g   t h e   d r a g  o f  the   base l i ne  C-141 a i r f o i l   a t  .72 

and .a Mach numbers,  and s ince   pe r tu rba t i on  shape functions  were  developed  by 
- 

- H i c k s   a t  NASA-Ames, t h e   r e s u l t i n g   a i r f o i l  will be r e f e r r e d   t o  as C141H7472. 
For the  purposes o f   t h i s   r e p o r t ,   t h e   b a s e l i n e   s e c t i o n  will be c a l l e d  C141-1. 
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Since  the  optimized  leading  edge  was  the  sixth 
designed  for  the  baseline  section,  this  airfoi 

Optimization  results. - The  numerical  opt 
with  the  baseline  airfoil  at a = 2O and comput 

in a series  of  leading  edges 
is  called C141-6. 

mization  was  done by starting 
ng solutions  for M, = .72  and 

M,,, = -74 for  the  perturbations  of  the  design  variables until the  design  objec- 
tive  and  the  four  constraints  were  met.  The  initial and final  inviscid  pres- 
sure  distributions  for Moo = 0.72 and MOD = .74 for  the C141-1 and  the  C141H7472 
airfoils  are  shown in figure 3.  The  amelioration  of  the  inviscid  flow  field 
and  the  attendant  reduction in wave drag resulting  from  numerical  optimization 
is  evident in these  data. 

The C141-1 and  C141H7472  airfoil  geometries  are  shown in figure 4 and the 
coordinates  of  the  C141H7472  airfoil  are  listed in table I .  Evident in this 
figure i s  the  attempt by the  optimization  code  to  use  aft-camber  to  achieve 
the  design  objective.  Since  the  lower  surface  was  fixed,  the  only  way  to in- 
corporate  aft-camber  was  to "hump" the  upper  surface at about 75% chord. 

The  aft hump leads  to a strong  adverse  pressure  gradient  on  the  upper 
surface  near  the trailing edge  which  conceivably  could  have a catastrophic 
effect  on  the  boundary  layer.  This  possibility  was  examined  by  computing  the 
viscous  flow  about  both  airfoils  using  the NYU 2-D transonic  airfoil  program. 
The  results  of  these  calculations  are  shown in figure 5 where  inviscid and 
viscous  results  for  the ai rfoi  1s at ct = 2 O  and M, = .72 and Moo = .74 are 
shown.  The  separation  point  predicted by the  Nash-Macdonald  (ref. 1) criteria 
used in the NYU program  are  flagged in the  pressure  distributions.  Separation 
is  predicted  to  occur  on  both  airfoils,  with  the  separation  point  being  further 
forward  on  the  C141H7472  airfoil.  The  default  procedure  of  the NYU program for  

treating  trailing-edge  separations  was  used in these  calculations.  (The  pro- 
cedure is  described in detail in reference 1.) Using  the  default  procedure, 
the  program  predicts  that  both  airfoils  will  have  about  the  same  drag,  despite 
the  apparent  shock-free  flow  associated  with  the  modified  airfoil. 

The  lift  loss  due  to  viscosity  is  also  evident in the  results  shown in 
figure 5, and it is  larger  than  estimated.  Consequently,  the  airfoils  have  to 
operate  at  an  angle  of  attack  greater than 2O  to  achieve a Cn = .57. 
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The dec is ion  was  made a t   t h i s   p o i n t   t o   t e s t   t h e  C141H7472 a i r f o i l   d e s p i t e  

t h e   p r e d i c t i o n s   o f   f l o w   s e p a r a t i o n  and t h e   u n c e r t a i n t y   i n   t h e   a c t u a l   v i s c o u s  

des ign   cond i t ion .   Th is   dec is ion  was  made because o f   t h e   b e l i e f   t h a t   t e s t   d a t a  

were n e e d e d t o p r o v i d e   g u i d a n c e   f o r   f u t u r e   a p p l i c a t i o n s o f n u m e r i c a l   o p t i m i z a t i o n .  

The model design and w i n d   t u n n e l   t e s t   a r e   d i s c u s s e d   i n   t h e   n e x t   s e c t i o n   o f   t h i s  

repo r t  . 

EXPERIMENTAL  TESTS 

Apparatus  and  Test  Procedures 

Model. - A two-dimensional model o f   t h e  C141H7472 a i r f o i l  was f a b r i c a t e d  

from 17-4PH s ta in less   s tee l   i n   acco rdance   w i th   t he   coo rd ina tes   g i ven   i n   t ab le  

I .  The model  has  a c h o r d   o f  17.. 78 cm (7.00  in.) and  a  span o f  50.80 cm (20.00 

in . ) .  The model completely spans the  two-d imensional   test   sect ion and i s  

supported  f rom  the  s ide  wal ls by means o f  tangs. A photograph o f   t h e  model 

i n s t a l l e d   i n   t h e  Lockheed  Compressible  Flow  Wind-Tunnel i s  shown i n   f i g u r e  6. 

The model was ins t rumented  w i th   f i f t y - th ree   (53)   s ta t i c -p ressure   measur ing  

o r i f i c e s :  27 on the  upper  surface and  26  on the  lower   sur face.  The o r i f i c e s  

were located  near  the  mid-span o f   t h e  model  and were  mounted f l u s h  and  normal 

t o   t he   l oca l   con tou r .  The measured o r i f i c e   l o c a t i o n s   a r e   l i s t e d   i n   t a b l e  I I .  

The model contour was checked  dimensional ly  using a template and f e e l e r  

gage. Discrepancies  f rom  the  design  contour were m o s t l y   w i t h i n  k.025 mn (.001 

i n . )   w i t h  some areas   reach ing   dev ia t ions   o f  k.050 mm (.002  in.). The a i r f o i l  

sur face was po l i shed   t o   conven t iona l   t ranson ic  model s u r f a c e   f i n i s h   o f   l e s s  

than .4 microns  (15  microinches). Spanwise t w i s t  and  warp o f   t h e  model were 

found t o  be n i l .  

T e s t   f a c i l i t y .  - The model was t e s t e d   i n   t h e  Lockheed CRJT. Reference 8 
conta ins a c o m p l e t e   d e s c r i p t i o n   o f   t h i s   f a c i l i t y .  The tunnel  i s  o f   t h e   b l o w -  

down type,   exhaust ing   d i rec t l y   to   the   a tmosphere .  The a i r   s t o r a g e   c a p a b i l i t y  

i s  368 m3 (13,000 ft3) a t  4.13 x lo6 N/m2 (600  psia).  A s leeve- type  con t ro l  

10 

L 



and four   s ta t i c   p ressure   tubes .  The 

The  wake rake has  been c a l   i b r a t e d   i n  

Data  have  been ob ta ined  in   p rev  

the  wake rake 

va l ve   accu ra te l y   ma in ta ins   t he   se t t l i ng  chamber s tagnat ion   p ressure   a t   se lec ted  

pressure  less  than  or   equal   to   the 1.72  x lo6 N/m2 (250  psia) maximum and a t  

mass f low  ra tes   less   than 1089 kg/sec. (2400 lb/sec.) .  

The t e s t   s e c t i o n   i s  50.8 cm (20.0 in.)  wide  by 71.2 cm (28.0 i n . )   h igh  

by 183 cm (72.0  in.)  long and i s  enc losed  in  a 3.7 m (12.0 ft.) diameter  plenum 

chamber. For  the model tes ted ,   the   tunne l   he igh t   to  model c h o r d   r a t i o  i s  4.0 

and the  tunnel  span t o  model c h o r d   r a t i o  i s  2.9. ModePblockage was 3 percent 

o f   t he   t es t   sec t i on   c ross   sec t i ona l   a rea .  The top  and bot tom  wal ls   o f   the  two-  

d imensional   test   sect ion have v a r i a b l e   p o r o s i t y   c a p a b i l i t y   ( f r o m  0 t o  lo%) ,  
ob ta ined   by   s l i d ing   two   pa ra l l e l   p la tes   w i th  .635 cm (.250  in.)  diameter  holes 

s lan ted  60 degrees  f rom  the  ver t ica l .  The  2-D t e s t   s e c t i o n   s i d e   w a l l s   a r e   n o t  

porous. 

Wake survey  rake. - The f i x e d  wake-survey  rake  used  for  section  drag meas- 

urements i s   d e s c r i b e d   i n   f i g u r e  7 and shown i n s t a l l e d   i n   t h e   t u n n e l   i n   f i g u r e  

6. The  wake rake was mounted a t   t h e   t u n n e l   c e n t e r l i n e  one chord  length  behind 

t h e   a i r f o i l  model. The rake has  a t o t a l   o f  90 t o t a l  head  measurement tubes 

tubes  are .15  cm (.06  in.)   in  d iameter.  

the   tunne l   w i thout  a  model present.  

i o u s C F W T a i r f o i 1   t e s t s   s i m i l a r   t o   t h a t  

i n s t a l l e d  and  removed t o   d e t e r m i n e   i t s  

o v e r   t h e   a i r f o i l .  These unpubl ished  data  indicated 

l i g i b l e   e f f e c t s  on the   no rma l - fo rce   coe f f i c i en t ,   t he  

i c i e n t ,  and t h e   a i r f o i l   p r e s s u r e   d i s t r i b u t i o n .  

- Measurements o f   t h e   s t a t i c   p r e s s u r e s   o n   t h e   a i r f o i l  

rake  pressure  were made u s i n g   e l e c t r o n i c a l l y   a c t u a t e d  

pressure  scanning  valves. The f u l l - s c a l e  range o f   the   quar te r -percent   accura-  

cy fo r   the   w ind   tunne l   cond i t ions   tes ted :  wake rake - 28.6 dynes/cm2 (k12.5 

p s i ) ;  and a i r f o i l   p r e s s u r e s  k34.4 dynes/cm2 (250.0 p s i ) .  CEC force  ba lance 

pressure  t ransducers were  used i n   c o n j u n c t i o n   w i t h  CEC se rvo   amp l i f i e rs   t o   p ro -  

v ide  a p r e c i s e  measurement o f   the  a tmospher ic   pressure,   s tagnat ion  pressure,  

and t e s t   s e c t i o n   s t a t i c   p r e s s u r e   t o  .025% o f   t h e   t r a n s d u c e r   c a p a b i l i t y :  6 . 8 9 ~  
l o 5  N/m2 (100.0 p s i )   f o r   t h e   t e s t   s e c t i o n   s t a t i c  and 1 . 3 8 ~ 1 0 ~  N/m2 (200.0 p s i )  

1 1  

conducted  here in   wi th  

i n f l uence  on the   f l ow  

the  wake rake had  neg 

pi tching-moment  coeff  

Instrumentat ion.  

surfaces and the  wake 



fo r   s tagnat ion   p ressure .  These t r a n s d u c e r s   a l l o w   d e t e r m i n a t i o n   o f   t h e   t e s t  

sec t ion  Mach number t o  a accuracy o f  5.001 a t   t he   h ighe rs t   s tagna t ion   p ressu re .  

Angle o f   a t t a c k  was measured w i t h  a ca l ib ra ted   po ten t iometer   opera ted   by  

t h e   a n g l e   o f   a t t a c k   d r i v e  mechanism. 

Raw pressure  data  were  recorded  on  magnet ic  tape  ut i l iz ing  theCFWThigh 

speed d a t a   a c q u i s i t i o n  system. 

Test and Methods 

Test   condi t ions.  - The aerodynamic c h a r a c t e r i s t i c s   o f   t h e  C141H7472 a i r -  

f o i l  were  invest igated  over a wide  range o f   t e s t   c o n d i t i o n s .  The a n g l e   o f  

a t t a c k   o f   t h e   a i r f o i l  was var ied  f rom 0 t o  5 degrees  and the  Mach number range 

inves t iga ted  was from 0.45 t o  0.78.  Tests  were  conducted a t  nominal  Reynolds 

numbers based  on a i r f o i l   c h o r d   o f  4 and 11 m i  1 1  ion.  The m a j o r i t y   o f   t h e   t e s t s  

was conducted  for  a w ind - tunne l   po ros i t y   o f  4%. Limited  data  were  obtained 

over a w a l l   p o r o s i t y  range o f  2 t o  6% t o   a s c e r t a i n   t h e   s e n s i t i v i t y  o f  t h e  new 

a i r f o i l   t o   t h i s  parameter. These resu l ts   a re   inc luded  in   Append ix  A. 

Data  reduction. - The s t a t i c   p r e s s u r e  measurements a t   t h e   a i r f o i l   s u r f a c e  

were  reduced t o   s t a n d a r d   p r  

ob ta in   sec t i on   no rma l - fo rce  

quar te r   chord   us ing   the   fo l  

.. 

essure  coef f  

and s e c t i o n  

lowing  equat 

1 

= I (cp2 - 
0 

i c i e n t s  and  then  machine  integrated t o  

pi tching-moment  coeff ic ients  about  the 

ions : 

S e c t i o n   p r o f i l e   d r a g  measurements  were  computed  from  the wake survey  rake 

measurements  by the  method o f   r e f e r e n c e  9 u t i l i z i n g   t h e   f o l l o w i n g   e q u a t i o n s :  
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and 

1 -  

The ,ked i s  a c o r r e c t i o n   f o r   t h e  wake r a k e   t o t a l  head tube  displacement 

e f f e c t  when i n  a t ransve rse   ve loc i t y   g rad ien t .   Th i s   co r rec t i on  i s  discussed 

in   re fe rence 9 and i s  g iven by 

T rans i t i on .  - For  the  Reynolds number t e s t s   o f  4 m i l l i o n ,  boundary  layer 

t r a n s i t i o n  was f i xed .  The a i r l ' o i l  was inves t iga ted   w i th   roughness   par t i c les  

located on bo th   sur faces   a t  0.05 C. The roughness  height was 0.00039 C and 

was. s e l e c t e d   a c c o r d i n g   t o   t h e   c r i t e r i a  o f  reference 10. The roughness s t r i p s  

were 0.13 cm (0.05 i n . )   w ide  and c o n s i s t e d   o f   B a l l o t i n i   g l a s s  beads s e t   i n  a 

p las t i c   adhes ive .  

For the  Reynolds number t e s t s   o f  1 1  m i l l i o n  no t r a n s i t i o n   s t r i p s  were 

u t i  1 ized. 

Tunnel   wal l   e f fects .  - The e f f e c t   o f   t h e   t u n n e l   w a l l s  on the two  dimen- 

s i o n a l i t y  o f  t he   f l ow  i s  cons idered  to  be smal l .   This  statement  is   supported 

by  measurements repor ted   in   re fe rence 11 on the   base l ine  C-141 a i r f o i l   w i t h  a 

s imi la r   tes t   a r rangement .  These r e s u l t s   i n d i c a t e d   v e r y   l i t t l e   v a r i a t i o n   o f  

t he   p ressu re   coe f f i c i en t   ac ross   t he   rode l  span fo r   va r ious   f l ow   cond i t i ons .  

The conclus ion was f u r t h e r   s u b s t a n t i a t e d  by o b s e r v a t i o n   o f   o i l   f l o w   p a t t e r n s  

a t   t h e   a i r f o i l - w a l l   i n t e r s c t i o n .   D i s t u r b a n c e s   i n   t h i s   j u n c t u r e  were conf ined 

t o  a very  small   regions. 

S tandard   subcr i t i ca l   w ind- tunne l   boundary   cor rec t ions   (normal - fo rce   in te r -  

ference and blockage ) have  been c a l c u l a t e d   f o r   t h i s   t e s t   u s i n g   t h e  method o f  

reference 1 2 .  Recent s t u d i e s   ( r e f .  7) have shown, however, t h i s  method t o  be 
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generally  inadequate  at  transonic  speeds.  As a result,  these  corrections  have 
not  be  applied  to  the  data  presented  herein. 

RESULTS AND DISCUSSION 

A complete  set of basic  aerodynamic  force  and  moment  data  as  well  as 
surface  pressure  distributions  for  the  C141H7472  airfoil at a Reynolds  number 
of 1 1  million  and  wind-tunnel  wall  porosity  of 4% is  contained in Appendix A. 
These  data  will  form  the  basis  for  assessing  the  modified  airfoil  performance 
to  be  discussed  below,  and  unless  stated  otherwise  all  data  will  be  for  these 
conditions.  Appendix A also  contains  limited  data  for a Reynolds  number  of 
4 million,  wind-tunnel  wall  porosity  data  from 2 to 6%. 

The  eva 
by  compa r i ng 
of  the C141- 

luation  of  the  performance 
test  data  for  this  airfoi 

1 and C141-6 airfoils.  Fo 

of  the  C141H7472  airfoil  will  be  made 
1 with  data  obtained in a recent  test 
llowing  this airfoil performance  evalu- 

ation, the efficacy  of  the design procedure  will  be  examined. 

The  exper 
Lockheed-Georg 
lowed by a rev 
pressures. 

imenta 
ia CFW 
iew  of 

C141H7472 Ai  rfoi 1 Aerodynamics 

1 data  obtained  from  the C14 
T are  discussed in this  sect 
the  aerodynamic  forces  resu 

Airfoi 1 pressures. - The  variation w 
surface  pressure  distributions at the  des 
can  be  seen in the  data  shown in figure 8 

1H7472  airfoil  model in the 
ion.  This  discussion  is  fol- 
lting from  the  surface 

ith free  stream  Mach  number  of  the 
ign normal  force  coefficient  of 0.57 
. A number  of  conclusions  can  be 

drawn  from  these  results.  First,  the  airfoil  does  not  have  the  aft-loading 
associated  with  the  cusped  region  of a modern  supercritical  airfoil. In fact, 
there  is a small  negative lift region  covering  the  last  ten  percent  chord. 
This  lack of aft  loading  is  attributable  to  the  modification  of  only  the  upper 
surface.  Since  the  lower  surface  could  not  deform,  the  amount  of aft camber 
that  could  be  designed  into  the  airfoil  was  limited by geometric  constraints. 
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The  only  way  to  induce  any  aft-loading  was  thus  to "hump" the  rear  upper  surface; 
a design  change  which  was  done by  the  optimization  design  code. 

The  airfoil  has a substantial  suction  peak  which  becomes  supersonic  at 
about 0.6 Mach  number.  The  supersonic  region  increases in size  with  increasing 
Mach  number,  and  is  terminated  by a fairly  strong  shock  wave  for  Mach  numbers 
greater  than  about 0.64. The  maximum  shock  strength  prior  to  drag  divergence 
is  reached  at a free  stream  Mach  number of 0.68. In this  case,  the  local  Mach 
number  ahead  of  the  shock is  1.26,  and  the  shock  induces a localized  separation 
bubble  at  the  foot of the  shock. 

The  variations  with  free  stream  Mach  number  of  shock  strength  and  location 
are  summarized in figure 9. The  shock  movemer?t  is  orderly,  with  the  shock 
first  forming  at M, = 0.60 at  about  2%  chord,  and  moving  aft  to  approximately 
55% chord at Mm = 0.78. The rapid increase in shock  strength  at  about 0.68 
Mach  is  evident in this  figure.  This  early  formation  of a strong  shock  wave 
can  be  expected  to  have  detrimental  effect  on  airfoil  drag  characteristics. 

Airfoil  forces. - The  airfoil drag coefficient  variation  with  Mach  number 
for Cn = 0.57 is shown in figure 10. These  data  exhibit a substantial drag 
increase in range  of M, = 0.60 to 0.72.  This  rapid and undesirable drag in- 
crease is  no  doubt  caused  by  the  formation  of  the  relatively  strong  leading 
edge  shock  discussed in the  preceeding  section.  From M, = 0.72  to M, = 0.76 
the  airfoil  drag  remains  fairly  constant.  This  result is interesting  since 
a "flat" Cd vs M, curve in this  Mach  range  was  one  of  the  airfoil  design  goals. 
For  Mach  numbers  greater  than  0.76,  the  airfoil  experiences  the  onset  of rapid 
drag  rise  associated  with  the  increasing  strength  of  the  shock  wave. 

Comparison  of  Airfoils 

Airfoil  C141H7472  was  designed  at  an  inviscid  condition  which  was  expected 
to  produce a minimum wave  drag  airfoil  at a normal-force  coefficient  of 0.57. 
In this  section,  the  performance  of  this  airfoil  at  its  design  point  relative 
to  both  the C141-1 and C141-6 airfoils is  evaluated.  The  variation  of  meas- 
ured drag with  Mach  number  for  the  three  airfoils  at Cn = 0.57 is  shown in 
figure 11. The  following  observations  can  be  made  form  these  data: 
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1. A i r f o i l  C141H7472 has a h igher   drag  d ivergence Mach number than 

e i t h e r   o f   t h e   o t h e r   t w o   s e c t   i o n s .  

2 .  For Mach numbers less  than MDD f o r   t h e  C141-1 a i r f o i l ,   t h e  C141H7472 

a i r f o i l  has s u b s t a n t i a l l y  more drag. 

3 .  The l e a d i n g - e d g e   m o d i f i c a t i o n   t o   t h e   b a s e l i n e   a i r f o i l  (C141-6) reduces 

t h e   s u p e r c r i t i c a l   d r a g  and increases MDD r e l a t i v e   t o   t h e   b a s e l i n e   a i r f o i l  

(C141-1). 

The reasons for these   resu l t s  can  be  deduced from  the  chordwise  pressure 

d i s t r i b u t i o n s  shown i n   f i g u r e  12. For M, = 0.55, t h e   f l o w s   a r e   s u b c r i t i c a l ,  

and i n   t h e  absence o f  any i n d i c a t i o n s   o f   f l o w   s e p a r a t i o n ,   t h e   h i g h e r   d r a g   o f  

t h e   m o d i f i e d   a i r f o i l   i s   p r o b a b l y   a t t r i b u t a b l e   t o   i t s   b l u n t   t r a i l i n g  edge. The 

r a p i d   d r a g   i n c r e a s e   o f   t h e   a i r f o i l  C141H7472 a t   approx imate ly  M, = 0.68  can  be 

seen t o  be  due t o   t h e   f o r m a t i o n  o f  a strong  leading-edge  shock wave which does 

no t   appear   on   e i t he r   o f   t he   o the r   two   a i r f o i l s .  The  Mach number upstream o f  

the  shock wave is   approx imate ly ,  1.26 a t  M, = 0.68  and Cn = 0.56. 

As Mm increases and the  design Mach numbers are  approached,  the  pressure 

d i s t r i b u t i o n s  show t h a t   t h e  shock  on a i r f o i l  C141H7472  moves downstream,  and 

decreases i n   s t r e n g t h .  A t  t he  same t ime, a shock wave forms  on  the  other two 

a i r f o i l s ,  and i n c r e a s e s   r a p i d l y   i n   s t r e n g t h .   T h i s   b e h a v i o r   r e s u l t s   i n   t h e  

increased MDD assoc ia ted   w i th   t he  C141H7472 a i r f o i l .  

Not d i r e c t l y  an  outcome o f   t h i s   s t u d y ,   b u t   n e v e r t h e l e s s   o f   i n t e r e s t ,   i s  

the  performance o f   t h e   a i r f o i l   w i t h   t h e   l e a d i n g - e d g e   m d i f i c a t i o n  (C141-6) 

near i t s  des ign   po in t .  When compared w i t h   t h e   b a s e l i n e   a i r f o i l  (C141-1), t h e  

leading-edge  modi f icat ion  produces  s ign i f icant ly  more leading-edge  suction 

( f i g .  12).   Also,   the  suct ion peak i s   f o l l owed   by  a n e a r l y   i s o t r o p i c   r e -  

compress ion.   Th is   behavior   resul ts   in   the  avoidance  o f   the  premature  shock 

format ion  which  occurred when the   en t i re   upper   su r face  was modif ied.  An i n t e r -  

es t ing   ques t ion ,  and one  which  remains t o  be d e f i n i t e l y  answered, i s   t h e   f a i l -  

u r e   o f   t h e   o p t i m i z a t i o n  scheme t o   f i n d  a leading-edge  geometry  which  would 

produce a s imi la r   i sen t rop ic   compress ion  when the   en t i re   upper   su r face  was 
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modified.  Perhaps the different  results  are  attributable to the  use  of  differ- 
ing shape  functions in the  optimization  scheme. 

The  airfoil C141H7472 did not perform  as  expected  at Cn = 0.57. The 
preliminary  theoretical  analysis  discussed in the airfoil  design  section in- 
dicated  that  the  normal-force  loss  due to viscosity might have  been  under- 
estimated in establishing  the  inviscid  design point. Consequently,  the  airfoil 
C141H7472  might  be  expected to perform  better  at  a  reduced  normal-force 
coefficient.  However,  the  drag  variations  with  Mach  number  for  the  three  air- 
foils  at Cn = 0.50 exhibit  the  same  general  characteristics  as  they did at 
Cn = 0.57,  as  evidenced by  the  data on figure 13. 

Design  Method  Evaluation 

The  experimental  data  comparisons  discussed  above  show  that  the  upper 
surface  modification  increased M, at  the  expense of more  drag  creep,  and  that 
in fact  the C141H7472 airfoil's  drag  at  the M, = 0.72  and M, = 0.74 design 
points  was  larger  than  that  of  the  baseline  airfoil.  This  less  than  satis- 
factory  airfoil  performance  was not a  result of the  failure  of  numerical 
optimization,  because  the  optimization did reduce  the  design  objective, in- 
viscid Cd,. This  fact  is  evidenced  by  figure 3 where  the  inviscid  pressure 
distributions  for both airfoils  at  the  design  conditions  were  shown. 

The  lack of performance  by  the  C141H7472  airfoil,  then,  must  be  due  to 
adverse  viscous  effects  which  were not taken into account.  The  effects of 
viscosity on airfoil  performancewereexamined by computing  solutions  using 
the  viscous NYU program  (ref. 1) for both the  baseline  and  the  modified  air- 
foils  and  comparing  the  solutions  with  experimental  data.  The  solutions  were 
computed  using  the  non-conservative  option in the NYU code,  and  employing  the 
program in more-or-less  "cook  book"  form.  However,  the  boundary  layer  dis- 
placement  effects  had to be  drastically  under-relaxed,  and  two  inviscid 
iterations  were  done  between  boundary  layer  calculations to permit  a  more 
stable  convergence  process. 

The  ag  reemen t 

sul  ts  is in genera 
between  theoret  ica 

1 poor for  both  the 
1 drag 
base1 

predictions  and  experimental  re- 
ine  and  the  modified  airfoil  as 



demonstrated  by  the  data shown 

be made from  these  data: 

1. MDD i s  p r e d i c t e d   t o   w i t h i n  

2. The shape o f   t he   d rag   cu rve  

n f i g u r e  14.  The fo l low ing   observa t ions   can  i 

004 Mach number f o r   b o t h   a i r f o i l s .  

f o r   t h e  base1 i n e   a i r f o i l  i s  f a i r l y  we1 1 pre- 

d i c ted ,   bu t  i s  underestimated by approximately 10 counts. 

3. Both  the  leve l  and the  shape o f   t h e  C141H7472 a i r f o i l ' s   d r a g   c u r v e   a r e  

rnispredicted by t h e o r y .   I n   p a r t i c u l a r ,   t h e   e a r l y   d r a g   r i s e   o c c u r r i n g   a t  

M, = 0.68 i s  missed i n   t h e   t h e o r e t i c a l   c a l c u l a t i o n s .  

The reasons f o r   t h e   f a i l u r e   o f   t h e  NYU v iscous   t ranson ic  code  can  be 

deduced  by compar ing  theoret ica l  and e x p e r i m e n t a l   p r e s s u r e   d i s t r i b u t i o n s   a t  

t he  same  Mach number  and 1 i f t  c o e f f i c i e n t .  These data  are shown f o r   t h e  

C141-1 and C141H7472 a i r f o i l s   i n   f i g u r e s  15 and 16, respec t i ve l y .  

The r e s u l t s  shown i n   f i g u r e  15 i n d i c a t e   t h a t   t h e  C141-1 a i r f o i l   p r e s s u r e  

d i s t r i b u t i o n s   a r e   f a i r l y   w e l l   p r e d i c t e d   b y   t h e o r y ,   w i t h   t h e   m a j o r   d i s c r e p a n c i e s  

be ing   t he   shock   l oca t i on ,   t ra i l i ng  edge pressure  recovery, and the  lower  sur- 

face  pressure  leve l .  The f a i l u r e   t o   p r o p e r l y  compute t h e   t r a i l   i n g e d g e   p r e s s u r e  

recovery   i s   p robab ly  due to   t he   l a rge   (app rox ima te l y  20 degrees) t r a i l  ing-edge 

included  angle  which  produces a t h i c k  boundary  layer. The NYU code  uses  a 

convent ional   (a lbe i t   ad justed)   boundary  layer  method  which i s  n o t   a p p l i c a b l e  

t o   t h i c k  boundary  layers. The i m p r o p e r   c a l c u l a t i o n   o f   t h e   t r a i l i n g  edge f l o w  

causes  erroneous resul ts  e lsewhere, as mani fested  by  the  incorrect  shock wave 

and lower  surface  pressures. 

D i s p i t e   t h e   f a c t   t h a t   t h e   t h e o r e t i c a l  shock wave i s   s t ronger   t han   t he  

experimental shock, t he  NYU program  predic ts  a lower  drag  level   than  recorded 

i n   t h e   t e s t .  Drag p r e d i c t i o n   u s i n g   t h i s  code,  then, i s   p robab ly   t oo   unce r ta in  

f o r  use i n   numer i ca l   op t im iza t i on ,  even when the   genera l   cha rac te r   o f   t he   a i r -  

f o i l   p r e s s u r e   d i s t r i b u t i o n   i s   f a i r l y   w e l l   p r e d i c t e d .  

The theo re t i ca l   p ressu res   f o r   t he  C141H7472 a i r f o i l  bear l i t t l e  resembl- 

ance to   t he i r   expe r imen ta l   coun te rpa r t s ,  as  evidenced  by  the  results shown i n  

f i g u r e  16. A t  Mm = 0.72, t h e   e n t i r e   c h a r a c t e r   o f   t h e   l e a d i n g  edge  shock i s  

missed,   whi le   a t  MOD = 0.74, a dual  shock i s   p r e d i c t e d  when o n l y  one  shock 
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occur red .   I n   bo th   cases ,   t he   t ra i l i ng  edge pressure  recovery  is   over-predic ted;  

even  more so  than  fo r   the   base l ine   a i r fo i l .   A lso ,   the   lower   sur face   p ressures  

a re   under -p red ic ted ,   bu t   no t   qu i te   t o   t he  same degree  which  they  were  missed 

f o r   t h e  C141-1 a i r f o i l .  

S o l u t i o n s   f o r   t h e  C141H7472 a i r f o i l  were a l s o  computed a t   o f f - d e s i g n  con- 

d i t i o n s ,  and r e s u l t s   f o r  Mm = 0.45 and Mm = 0.78 are shown i n   f i g u r e s  17 and 18, 

r e s p e c t i v e l y   ( b o t h   s o l u t i o n s   a r e   f o r  Cn = 0.57). For t h e   s u b c r i t i c a l  M, = 0.45 

cond i t i on ,  agreement  between theory and exper iment   i s  good, except   fo r   the  

a f o r e m e n t i o n e d   t r a i l i n g  edge pressure  recovery. A t  M, = 0.78, the  shock wave 

has moved a f t   t o   a p p r o x i m a t e l y  55% chord, and the  supersonic  re-expansion  which 

occur red   in   the  M, = 0.72  and 0.74 so lu t ions   i s   no t   p red ic ted .   A l though  agree-  

ment here i s  b e t t e r   t h a n   a t   t h e   d e s i g n   c o n d i t i o n s ,  i t  i s  n o t   s u f f i c i e n t l y  

a c c u r a t e   f o r   a i r f o i l   o p t i m i z a t i o n .   I n   f a c t ,   d r a g   p r e d i c t i o n s   a r e   r e l a t i v e l y  

accu ra te   on l y   f o r   subc r i t i ca l   f l ows   f o r   t he  C141H7472 a i r f o i l .  

All o f   the   d isc repanc ies   a re   p robab ly   a t t r ibu tab le   in   the   ma in   to   improper  

modeling o f   t h e   v i s c o u s   t r a i l i n g  edge f l o w .   T h i s   f a i l u r e  i s  accentuated  for  

the C141H7472 a i r f o i l  because the  "hump" in  the  upper  surface  produces a s t rong  

adverse   p ressure   g rad ien t   near   the   t ra i l ing  edge. The resu l t i ng   g rad ien t   p ro -  

duces a t h i c k e r  boundary  layer  than can be p red ic ted  by simple  boundary  layer 

theory.   This  th ick  boundary  layer  produces a reduced t r a i l i n g  edge pressure 

recovery when compared t o   t h e   b a s e l i n e   a i r f o i l ;  a r e s u l t   w h i c h   i s   n o t   p r e d i c t -  

ed  by  theory. 

Exper iences  both  at  Lockheed and elsewhere  have shown the  NYU code t o  

y i e l d   r e l i a b l e   t r a n s o n i c   r e s u l t s   f o r   o t h e r   a i r f o i l s .   C o n s e q u e n t l y ,   a l t e r n a t e  

reasons f o r   t h e   f a i l u r e   t o   p r e d i c t   t h e  C141H7472 a i r f o i l ' s  aerodynamics  were 

explored. 

One p o s s i b i l i t y  examined was wind  tunnel   wal l   in ter ference.   Prev ious 

t e s t s   i n   t h e  CFWT ( i n c l u d i n g   t h e   b a s e l i n e   a i r f o i l   t e s t s )   i n d i c a t e   t h a t  4% 
po ros i t y   bes t   s imu la tes   f ree -a i r   cond i t i ons .  Was i t  poss ib le ,  however, t h a t  

good  agreement could be a t t a i n e d  between theory and e x p e r i m e n t   f o r t h e  C141H7274 

a i r f o i l   u s i n g  a d i f f e r e n t   w a l l   p o r o s i t y ?  This quest ion was answered  by  using 

t h e   l i m i t e d   v a r i a b l e   p o r o s i t y   d a t a   t a k e n   i n   t h i s   t e s t ,  and comparing them w i t h  



theoretical  solutions  at  the  same  lift  coefficients.  The  result of this 
side-study  was  that  good  agreement  could  not  be  found  for  any  porosity (2% to 
6 % )  investigated. 

A second  possibility  for  the  disagreement  might  be  the  failure  of  the 
invisci 
plored 
scheme 
servat i 
waves. 

d flow  region  nonconservative  formulation.  This  possibility  was  ex- 
by  computing  some  solutions  using  the  quasi-conservative  differencing 
option  included in the NYU code.  This  study  was  done  because a con- 
ve  problem  formulation  is  known  to  be  correct  for  flows  with  shock 
Consequently  there  was a need  to  determine  if  the  use  of  such a formu- 

lation  would  improve  the data correlations  for  the  modified  airfoi 1. The  re- 
sults  of  this  study  are  summarized in figure 19 where  nonconservative and 
quasi-conservative  solutions  are  compared  with  experimental  data  for  the m d -  
ified  airfoil  at  the  design  points. As these  comparisons  show,  the  theoretical 
solutions  are  similar, and neither  agrees  well  with  test  data.  The  fundamental 
problem  of  the  failure  to  accurately  compute  the  trailing  edge  flow  is  evident 
in both  solution  techniques. 

An attempt  was  made  to  force a match  between  theory  and  experiment  by 
varying the  theoretical  angle of attack  and/or  free  stream  Mach  number.  The 
comparisons  were  made  for  experimental Cn = 0.57 and M, = 0.72,  0.74, and 0.78. 

Theoretical  solutions  were  computed  using  both  conservative  and  nonconservative 
differencing.  The  results  of that investigation  are  summarized in figure 20. 
The  improved  correlation  is  evident in these data;  however,  the  improvement 
was  obtained  for  substantially  different  theoretical lift coefficients and 
free  stream  Mach  numbers. Of interest  is  the  close  agreement  between  theoreti- 
cal and experimental  angle  of  attack.  This  result  implies that the  good  corre- 
lation  on  shock  strength and position  was  probably  obtained  because  the  airfoil 
was at the  same  effective  attitude in both  the  theoretical  calculations and 
experiment.  The  trailing  edge  flow is  still  not  correctly  predicted, and the 
erroneous drag predictions  remain. 

This  attainment  of  the  better  theory/experiment  correlation  required, o f  

course, a priori  knowledge  of  the  experimental  results.  Such a requirement 
obviously  cannot  be  placed  on  an  airfoil  design  methodology.  Hence,  the ob- 
servation  can  be  made that an improved  transonic  viscous  airfoil  method  is 
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required to make  airfoil  design  practical  and  reliable.  The  most  needed  im- 
provement  seems to be  a  better  trailing edge flow  formulation. 

CONCLUDING  COMMENTS 

An upper  surface  for  a  conventional  airfoil  section  has  been  designed 
using  numerical  optimization to improve  the  airfoil's  supercritical  perform- 
ance.  The  modified  airfoil  (C141H7472)  was  tested in  the  Lockheed-Georgia 
Compressible  Flow  Wind  Tunnel.  The  performance  of  the  modified  airfoil  was 
evaluated  by  comparisons  with  test  data  for both the  baseline  conventional 
section (C141-1) and  an  airfoil  development  by  modification of only  the  base- 
line  airfoil's  leading-edge  (C141-6). An evaluation  of  the  design  procedure 
was  then  made  by  comparing  theoretically  predicted  airfoil  aerodynamics  with 
experimental  results.  The  salient  results of the  study  are  summarized  below: 

1. The  airfoil  with  modified  upper  surface  (C141H7472)  increased MDD relative 
to the  base1 
attributable 

2. Numer i ca 

ne  airfoil (C141-1) at  the  expense  of  larger  drag  creep  which  is 
to the  premature  formation of a  relatively  strong  shock  wave. 

optimization did produce  an  airfoil  with  reduced  inviscid  wave 
drag.  However,  viscous  analysis  failed to predict  either  the  premature  shock 
formation or the  airfoil's  drag  level. 

3 .  The  failure of the  viscous  airfoil  analysis  method in this  application  is 
probably due to the  inability of the  method to compute  the  thick  boundary 
layer  resulting  from  the  strong  adverse  pressure  gradient  occurring  over  the 
trail  ing-edge  region of airfoil  C141H7472. 

4 .  The  use  of  a  quasi-conservative  formulation in lieu of  the  standard non- 
conservative  scheme did not have  a  significant  effect on the  useability of the 
theoretical  results. 

5. The  concept of numerical  optimization  offers  an  efficient  and  versatile 
method  for  aerodynamic  design.  However,  inviscid  optimization  should be 
restricted to limited  modifications  which do not significantly  affect  the 
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viscous  flow  (e.g.,  the  leading-edge  re-design  study  briefly  discussed  herein), 
or  to  airfoil  designs  for  which  viscous  effects  are  well-understood. 

6. Research  should  be  devoted  to  developing  an  improved  two-dimensional 
transonic  viscous  flow  method. If such a method  were  available,  its  use 
with  numerical  optimization  would  provide a means  for  the  efficient  design 
of  advanced  transonic  ai  rfoi 1 s .  
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TABLE 1 .  - DESIGN  ORDINATES FOR C141H7472 A I R F O I L  

UPPER  SURFACE LOWER SURFACE 

x /c  z/c 

.ooooo 

.00020 

.00040 

.00060 

.00080 

. 00 1 00 

.00200 

.00300 

.00400 

. 0 1 000 

.02000 

.03000 

.04000 

.05000 

.06000 

.07000 

.08000 

.10000 

.12500 

.15000 

.17500 

.20000 

.22500 

.25000 

.27500 

.32500 

.30000 

.ooooo 
-00489 
.00625 
.00724 
.00804 
.00874 
.01133 

.01471 

.(I2069 

.02653 

.01320 

- 03059 
.03385 
.03664 
.03911 
.Ob1 33 
.a4337 
.Ob698 
.05083 
.05414 
.05704 
.05963 
.06197 
.06410 
.06604 
.06779 
-06934 

x/c  z/c 

.35000 

.37500 

.40000 

.42500 

.45000 

.47500 

.50000 

.52500 

.55000 - 57500 

.60000 

.62500 

.65000 

- 70000 
.72500 
,75000 
.77500 

.82500 

.67500 

.80000 

.85000 

.87500 

.90000 

.92500 

.95000 
-96000 
.97000 
.38000 

1 .ooooo 

.07070 

.07185 

.07347 

.07421 

.07426 

.07410 

.07374 

.07318 

.(I7135 

.07002 

.06834 

.06624 

.06366 

.0605 1 

.05672 

.05222 

.04698 

.Ob1 08 

.03476 

.02840 

.02240 

. 0 1673 

.(I1446 

.01214 

.00978 

.00500 

- 07277 

- 07395 

- 07239 

x/c  z/c 
~- 

.ooooo 

.0024 1 

.00961 

.02153 

.03806 

.05904 
-08427 
. 1  1 349 
.14645 
.18280 
.22221 
.26430 
.30866 
.35486 
.bo245 
.45099 
.50000 
.5490 1 
* 59755 
.64514 
.69134 
73570 

.77779 

.81720 
* 85355 
.8865 1 
.91573 
.94096 
.96 194 
.97847 
.99039 
.99759 

1 .ooooo 

.ooooo 

.00781 

.01527 

.02192 

.02735 

.03228 

.03664 

.04016 

.Ob287 

.Ob51 6 

.Ob697 

.04820 

.Ob895 

.Ob928 

.Ob89 1 

.04784 

.04619 

.Ob398 

.Oh093 

.03717 

.03314 

.02927 

.02524 

.02140 

.01769 

.01410 

.00765 

.00498 

.(IO278 

.00122 

.ooooo 

. o 1072 

.00030 
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TABLE I I .  - A I R F O I L  C141H7472 PRESSURE ORIF ICE  LOCATIONS 

UPPER  SURFACE 

TUBE  NO. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

x/c 

0.0 
.0145 
.0294 
.0446 
,0629 
.0750 
-1000 
.1500 
.200 1 
.2497 
,3000 
.3506 
.bo00 
.4493 
.SO0 1 
.5493 
,5997 
.6500 
.699 1 
.7506 - 7994 
.a497 
.8994 
.9500 
.9643 
,9794 
.9956 

LOWER SURFACE 

TUBE NO. 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

x/c 

.0144 

.0289 

.0447 

.0597 

.0751 

.0994 

.1497 

.1996 

.2494 

.3000 

.3497 

.3993 

.4487 

.4986 

.549 1 

.5996 

.6495 

.6986 

.749 1 

.799 1 

.8483 

.8996 

.9490 

.9639 

.9799 

.9940 

25 



DATA Cn 'd RN 

U TEST .72 .566 .0097 3 . 3 O  1 1  x 

THEORY .72  570 .0088 2.20 1 1  x 

1 06 

1 06 

26 

Figure 1.  Design point theoretical and  experimental 
pressures  for the base1  ine  ajrfoi 1 (C141-1). 



EXPONENT  TABLE 

P 

x/c 

a 

6.578813 10 
3.106283 9 
1.943358 

Figure 2. Upper surface modification airfoil parameterization. 
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x/c 
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-1 

cP 

0 .2 .4  .6 .8 1 .,o 
x/c 

Figure 3 .  A i r f o i l  C141H7472 inv isc id   des ign   p ressures  ( a =  2'). 



BASELINE AIRFOIL - Cl41-1 

UPPER SURFACE MODIFICATION - C141H7472 

F igure  4. Comparison o f   a i r f o i l   g e o m e t r i e s .  
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-1.2 
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- 1 . 6  
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cP 
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CONDITIONS: Mm = 0.72, RN = 1 1  x lo6  
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x /c  

8 1 .o 

F igure  5. I n v i s c i d  and viscous  pressures  on  the  basel ine and 
m o d i f i e d   a i r f o i l s  a t  a = 2 O  (Continued). 
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Figure 5. Concluded. 



Figure 6. Wind tunnel model installation. 
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-2,4 
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- ,4  
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x/c 
Figure 8. - Airfoil pressure distribution, Cn=.57, R ~ = 1 1  x1O6, 

x/CT = free. 
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Figure  8. Continued. 
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F igure  8. Continued. 
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F igure  8 Concluded. 
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x/cs 

I 4  

,2  

, o  
60 .64 

,6 

I 4  

I 2  

0 
I 6,O I 64 

I 68 I 72 
Mw 

I 76 I 80 

I 68 I 72 I 76 
r1 

W 

I 80 

F igure  9 .  - E f f e c t   o f  Mach  number on a i r f o i l  shock c h a r a c t e r i s t i c s   a t  
C,=.57, R ~ = 1 1  x106,  X/CT=free. 
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Figure 10. - E f f e c t   o f  Mach  number on drag coef f i c ien t ,  Cn = .57, 
R ~ = l l  x106,  X/CT=free. 
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Figure 11. Comparison of measured  airfoil performances at Cn=O.57, R ~ = 1 1  x l 0 q  



C P 

.1 .2 

- .8  

-. 4 

0 

.4  

.8 
0 

SYMBOL A I RFO I L Cn cd Cm 

A C141-1 -567 .0092 -.Ob33 
0 C141-6 -531 -0090 -.Ob06 

El C1417472 -569 .0096 -.Ob17 

.2 .4 .6 

x/c 
.8 1 .o 

Figure  12.  Comparison o f  measured a i r f o i l   p r e s s u r e s ,  RN = 11 x106. 
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Figure 12. Continued. 
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SYMBOL A I RFO I L Cn cd cnl 
A C141-1 ,562 .0097 -.Ob31 
0 C141-6 . .579 .0095 -.0373 

C.1417472 .558 .0116 -.0333 

, . . . . . . . .  . . . . . . .  .... - . -. . . . . .  . . . . .  - . , ....:...:; . , . .  . , - . .  
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.8 1 .o 

gure 12. Continued. 
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SYMBOL A I RFO I L C" cd cm 
A C141-1 -566 .OlOl -. 0413 
0 C141-6 -546 .0095 -.Ob13 
El C1417472 .571 .0121 -. 0322 

0 .2 .4 . 6  .8 1 .o 
x/c 

Figure 12.  Continued. 
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SYMBOL AIRFOIL Cn ‘d cm 
A C141-1 .566 .0109 -.0490 

0 C141-6 .569 .0099 -.Oh30 

E l  C1417472 -572 .0120 -.0333 
-1.6 

- 1 . 2  

- .8  

-.4 

0 

.4 

.a 

x/c 

Figure  12.  Continued. 
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SYMBOL A I RFO I L Cn  ‘d cm 

A C141-1 .557 .O139 - .056j  

0 C141-6 .61O .O147 -.0568 

a C1417472 .563 .0120 -.0367 

0 .2 .4  .6  .8 1 .o 
x /c  

F igure  12.  Continued. 
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-1.2 

- .a  

CP 

- . 4  
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.8  

SYMBOL A I RFO I L Cn cd Crn 

0 C141-1 .546 .O218 -.Of552 

0 C1417472 .577 .0160 -.0455 
. . .  .................. . 

0 .2 .4 .6 .a 1 .o  
x/c 

Figure  12.  Concluded. 
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I 

F i gu re  1 3 .  Measured a i r f o i l  performance a t  Cn=0.50. 
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Figure 14. Theoretical and experimental drag for the  baseline and 
upper  surface  modification. 
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0 .2 .4 . 6  .8 1 .o 
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Figure 15. Baseline airfoil theoretical and experimental 
pressures at C,=O.57. 
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Figure 15. Concluded. 
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F i g u r e   1 6 .   A i r f o i l  C141H7472 t h e o r e t i c a l  and exper imenta l  
pressures a t  C, = 0.57. 
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Figure 16. Concluded. 
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Figure 17. Comparison o f  airfoil C141H7472 pressures 
at subcritical conditions (C,= .57, Mm= ,451 
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F i g u r e  18. Comparison o f  a i r f o i l  C141H7472 pressures 
near  'drag d i vergence (Cn = .57, M, = .78) 
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Figure 19.  Comparison of theoretical solutions with experimental 
data for  airfoil C141H7472 at C n  = 0.57 
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Figure 19. Concluded. 
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" - .  . . I  I I I I  I I 

SYMBOL DATA MACH a C" 'd 

0 EXP. .72 3.0 0.57 .0121 

"- QUASI-CONS. .71 3.0 0.65 .0080 

NON-CONS. . 7 2  3.0 0.69 .OO96 

- 1  

- 1  

0 . 2  . 4  .6 .8  1 . o  
x / c  

Figure 20. Airfoil C141H7472 theoretical and experimental 
pressure match. 
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SYMBOL DATA MACH a cd 

0 EXP 0.74 2.77  0.57 .o i  20 

"- QUASI-CONS. 0.725  2.75 0.68 .0092 

NON-CONS. 0.73 2.75 0.66 .0089 

C ' P  

x/c 

Figure 20. Continued. 
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SYMBOL DATA MACH a C" 'd 

0 EXP .78 2.5  0.58 .0160 

- NON-CONS. .75 2.4 0.65 .0089 
- - - QUAS I -CONS. .76 2.5 0.60 .0138 

-1 

- 1  

C 'P 

. 6  

.2 

- .E  

.4 

0 

. 4  

.8 
0 .2 . 4  .6  .8 1 . o  

x / c  

F i g u r e  20. Concluded. 
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APPENDIX  A: PLOTTED  TEST  DATA 

Results  from  Lockheed-Georgia  Comressible  Flow Wind Tunnel  Test 029 are  

d e t a i l e d   i n   p l o t t e d   f o r m   i n   t h i s  appendix. The aerodynamic f o r c e   c o e f f i c i e n t s  

f o r   a i   r f o i  1 C141H7472 are  shown i n   f i g u r e s  A1 through A9 f o r   t h e   b a s i c   t e s t  

c o n d i t i o n s   o f  RN = 11 x IO6, T = 4%, and f ree   t rans i t ion .   F igures  A10 through 

A13 conta in   the   aerodynamic   coe f f i c ien ts   fo r  RN = 4 x  l o6 ,  T = 4%, and t r a n s i t i o n  

f i x e d   a t  5% chord. 

The chordwise  pressure  d is t r ibut ions  are shown f o r   t h e   b a s i c   t e s t  con- 

d i t i o n s   i n   f i g u r e s  A14  through A29, and f o r  RN = 4 x  lo6  i n   f i g u r e s  A30 through 

A36. Figures A37  and ~ 3 8  conta in   the   chordwise   p ressure   d is t r ibu t ions   fo r   wa l l  

p o r o s i t i e s   o f  2%, 3%, 4%, 5%,  and 6%. 
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F igu re  AI. - A i r f o i l   f o r c e  d a t a  f o r  M = O . 4 5 ,  R ~ = 1 1  x106 ,  x / C ~ = F r e e  
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Figure A10 - - Airfoil fo rce  data f o r  M=0.72, R ~ = 4 ~ 1 0 ~ ,  X / C T = . O ~  
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Figure ,412 . - Airfoil force d a t a  for M =  0.76, R N =  4 x  l o 6 ,  X / C T =  .05 
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Figure A13. - Airfoil force data for M=O.78, R N = ~ x ~ O ~ ,  X/C,= .05 
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X/C, = Free 
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X/CT = Free 
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F i g u r e  A23.- A i r f o i l  Pressure D i s t r i b u t i o n  f o r  M = 0.72, R N  = 11 x 10 

X/C, = Free 
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F i g u r e  A24 .- A i r f o i l   P r e s s u r e   D i s t r i b u t i o n   f o r   M = 0 . 7 4 ,  R ~ = 1 1  X l o 6 ,  
X/CT = Free 
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Figure A26,- A i r f o i l   P r e s s u r e   D i s t r i b u t i o n   f o r  M = 0 . 7 6 ,  R ~ = 1 1  x 1 0 6 ,  

X/CT = Free 
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Figure A27.- Airfoil  Pressure Distribution for  M = 0.76, RN = 1 1  x 10 , 

X/C, = Free 
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F i g u r e  A 2 8 . -  A i r f o i l  Pressure D i s t r i b u t i o n  f o r  M=0.78, R ~ = 1 1  x106,  
X / C T  = Free 
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F i g u r e  A29.- A i r f o i l   P r e s s u r e   D i s t r i b u t i o n   f o r  M = 0.78, RN = 

X/C, = Free 

1 1  x 10 , 6 
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F i g u r e   ~ 3 0 . -   A i r f o i l   P r e s s u r e   D i s t r i b u t i o n  for  M=0.72, R ~ = 4 ~ 1 0 ~ ,  
X / C T =  .05 
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F i g u r e  A31 .- A i r f o i l  P r e s s u r e   D i s t r i b u t i o n  f o r  M=0 .74 ,  Q q = 4 x 1 0 6 ,  

X / C T  = . 05  
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F i g u r e  A33 .- A i r f o i l   P r e s s u r e   D i s t r i b u t i o n   f o r  M=0.76, R N = ~ X  l o 6 ,  
X/CT = . O 5  
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F i g u r e  A34 .- A i r f o i l   P r e s s u r e   D i s t r i b u t i o n   f o r  M = 0.76, RN = 4 X 10 , 

X/C, = .05 
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F i g u r e  A35.-  A i r f o i l   P r e s s u r e   D i s t r i b u t i o n   f o r  M=0.78, R N = ~ X ~ O ~ ,  

X/C, = .05 
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F i g u r e  A36.- A i r f o i l  Pressure D i s t r i b u t i o n   f o r  M = 0.78, RN = 4 X 10 , 6 

X/C, = .05 
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F i g u r e  A37.-  E f f e c t   o f  Wind  Tunnel Wall P o r o s i t y   o n   A i r f o i l   P r e s s u r e  

D i s t r i b u t i o n ,  M = .74, RN = 11  x 10 , ct = 3.85 . 6 
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Figure A38.- Effect of Wind Tunnel Wall Porosity on  Airfoil Pressure 

Distribution, M = .74 RN = 11 x 10 , c1 = 3.85. 6 
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